Damping in reflexively active and areflexive lengthening muscle evaluated with inertial loads.

نویسندگان

  • D C Lin
  • W Z Rymer
چکیده

Damping in reflexively active and areflexive lengthening muscle evaluated with inertial loads. J. Neurophysiol. 80: 3369-3372, 1998. Studies of active areflexive muscle have shown that during a constant velocity stretch the increment in force elicited by an incremental length change falls dramatically after a few hundred micrometers of stretch, a finding labeled as "muscle yield." The mechanical behavior after the yield was like a viscous damper, in that force varied only with velocity. In light of these observations, our aims were to determine whether viscous properties are also evident under more physiological conditions, specifically under inertial loading, and to evaluate the damping action of reflexively intact compared with that of deafferented muscle. The active soleus muscle in a decerebrate cat was forcibly stretched by a simulated inertia with a specified initial velocity. We compared muscle length changes when afferent pathways were intact with those recorded after cutting the dorsal roots. Our findings were that areflexive muscle showed highly damped responses, with large changes in mean muscle length, indicative of high viscosity relative to stiffness. In contrast, reflexively active muscle produced lightly damped oscillations, with minimal changes in mean length, reflecting low viscosity and high stiffness. It appears that the stretch reflect modifies the relative contributions of elastic and viscous-like forces, maintaining elasticity, which in turn sustains oscillations. These differences highlight tradeoffs between positional and velocity regulation, in that elastic properties of reflexively active muscle promote oscillations with modest change in mean muscle length, whereas viscous-like properties of areflexive muscle produce damped responses, with poor positional regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damping actions of the neuromuscular system with inertial loads: soleus muscle of the decerebrate cat.

A transient perturbation applied to a limb held in a given posture can induce oscillations. To restore the initial posture, the neuromuscular system must provide damping, which is the dissipation of the mechanical energy imparted by such a perturbation. Despite their importance, damping properties of the neuromuscular system have been poorly characterized. Accordingly, this paper describes the ...

متن کامل

Damping actions of the neuromuscular system with inertial loads: human flexor pollicis longus muscle.

Our previous work in an animal model showed that neuromuscular damping properties help maintain limb posture by effectively dissipating mechanical energy arising from disturbances. The purpose of this study was to determine whether similar damping properties were expressed in intact, normal human muscles. To review briefly, when the reflexively active soleus muscle in a decerebrate cat is coupl...

متن کامل

Older adults use a unique strategy to lift inertial loads with the elbow flexor muscles.

The purpose of this study was to determine the effect of age on the ability to exert steady forces and to perform steady flexion movements with the muscles that cross the elbow joint. An isometric task required subjects to exert a steady force to match a target force that was displayed on a monitor. An anisometric task required subjects to raise and lower inertial loads so that the angular disp...

متن کامل

Physiological loading of isolated mammalian cardiac muscle.

Cat papillary muscles were subjected to a complex loading function resulting from an analysis of the heart as a pump. The papillary muscle was assumed to be a hypothetical bundle of circumferential muscle fibers in the wall of a simplified cylindrical ventricle. The loading included inertial, resistive, and capacitive components of the cardiovascular system. Changes of ventricular dimensions we...

متن کامل

Intrinsic properties and reflex compensation in reinnervated triceps surae muscles of the cat: effect of movement history.

Effects of prior motion on ramp stretch responses of reflexive and areflexive muscles were measured in decerebrate cats. Soleus and gastrocnemius muscles were rendered areflexive by reinnervation a minimum of 9 mo before the terminal experiments. The introduction of a shortening phase prior to the ramp stretch increased the normalized initial stiffness of muscles and decreased the tendency to y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 6  شماره 

صفحات  -

تاریخ انتشار 1998